Оптика тонких слоёв - definition. What is Оптика тонких слоёв
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Оптика тонких пленок
  • Дихроические фильтры создаются при помощи покрытия тонкими плёнками

Оптика тонких слоёв      

раздел оптики (См. Оптика). В О. т. с. изучается прохождение света через один или последовательно через несколько непоглощающих слоев вещества, толщина которых соизмерима с длиной световой волны. Специфика О. т. с. заключается в том, что в ней определяющую роль играет Интерференция света между частично отражаемыми на верхних и нижних границах слоев световыми волнами. В результате интерференции происходит усиление или ослабление проходящего или отражаемого света, причём этот эффект зависит от вносимой оптической толщиной (См. Оптическая толщина) слоев разности хода (См. Разность хода) лучей, длины волны (или набора длин волн) света, угла его падения и т.д. Тонкие слои могут быть образованы на массивной подложке из стекла, кварца или др. оптической среды с помощью термического испарения вещества и его осаждения на поверхность подложки, химического осаждения, катодного распыления (См. Катодное распыление) или химических реакций материала подложки с выбранным веществом. Для получения таких слоев используют различные окислы: Al2O3 (1,59), SiO2 (1,46), TiO2 (2,2-2,6); фториды: MgF2 (1,38), CaF2 (1,24), LiF (1,35); сульфиды: ZnS (2,35), CdS (2,6); Полупроводники Si (3,5), Ge (4,0), а также некоторые др. соединения. (В скобках указаны преломления показатели (См. Преломления показатель) веществ.)

Одно из важнейших практических применений О. т. с. - уменьшение отражательной способности поверхностей оптических деталей (линз, пластин и пр.). Подробно об этом см. в ст. Просветление оптики. Нанося многослойные покрытия из большого (13-17 и более) числа чередующихся слоев с высоким и низким n, изготовляют зеркала с большим Отражения коэффициентом, обычно в сравнительно узкой спектральной области, но не только в диапазоне видимого света, а и в УФ и ИК диапазонах (см. Зеркало). Коэффициент отражения таких зеркал (50-99,5\%) зависит как от длины волны, так и от угла падения излучения. С помощью многослойных покрытий разделяют падающий свет на прошедший и отражённый практически без потерь на поглощение; на этом принципе созданы эффективные светоделители (полупрозрачные зеркала). Системы из чередующихся слоев с высоким и низким n используют и как интерференционные поляризаторы, отражающие составляющую света, поляризованную перпендикулярно плоскости его падения (последняя проходит через направление светового луча и нормаль к поверхности), и пропускающие параллельно поляризованную составляющую (см. Поляризационные приборы, Поляризация света). Степень поляризации в проходящем свете достигает для многослойных поляризаторов 99\%. О. т. с. позволила создать получившие широкое распространение интерференционные Светофильтры, полоса пропускания которых может быть сделана очень узкой - существующие многослойные светофильтры выделяют из спектральной области шириной в 500 нм интервалы длин волн 0,1-0,15 нм. Тонкие диэлектрические слои применяют для защиты металлических зеркал от коррозии и при исправлении аберраций линз и зеркал (см. Аберрации оптических систем). О. т. с. лежит в основе многих других оптических устройств, измерительных приборов и спектральных приборов (См. Спектральные приборы) высокой разрешающей способности. Светочувствительные слои Фотокатодов и Болометров по большей частью представляют собой тонкослойные покрытия, эффективность которых существенно зависит от их оптических свойств. О. т. с. широко применяется в Лазерах и усилителях света (например, при изготовлении интерферометров Фабри - Перо; см. Интерферометр), при создании дихроичных зеркал, используемых в цветном телевидении (См. Цветное телевидение), в интерференционной микроскопии (см. Микроскоп) и т.д. См. также Ньютона кольца, Полосы равного наклона, Полосы равной толщины.

Лит.: Просветление оптики, под ред. И. В. Гребенщикова, М. - Л., 1946; Розенберг Г. В., Оптика тонкослойных покрытий, Л., 1958; Крылова Т. Н., Интерференционные покрытия, Л., 1973.

Л. Н. Капорский.

Лучевая оптика         
  • Отражение луча света от гладкой поверхности
  • показателями преломления]] <math>n_1</math> и <math>n_2</math> (на рисунке <math>n_1<n_2</math>)
ГЕОМЕТРИЧЕСКАЯ ОПТИКА         
  • Отражение луча света от гладкой поверхности
  • показателями преломления]] <math>n_1</math> и <math>n_2</math> (на рисунке <math>n_1<n_2</math>)
раздел оптики, в котором распространение света в прозрачных средах рассматривается на основе представления о световом луче как линии, вдоль которой распространяется световая энергия. Законы геометрической оптики применяются для расчетов построения изображения при прохождении света через оптические системы.

ويكيبيديا

Оптика тонких плёнок

О́птика то́нких плёнок Тонкие плёнки, нанесённые на поверхность вещества, в частности на стекло, из которого изготовляются оптические приборы, значительно влияют на отражение и пропускание света, если их толщина соизмерима с длиной световой волны.

Наиболее интересные свойства имеют плёнки с толщиной, которая равняется (четверти длины волны + целое число длин волн), либо (половина длины волны + целое число длин волн), которые, соответственно, максимально уменьшают или увеличивают отражение света поверхностью.

What is <font color="red">О</font>птика т<font color="red">о</font>нких слоёв - definition